

A Field Trial of Inexpensive Nonproprietary OSS Designs for Nitrogen Removal

Michael Brett

Dept. Civil & Environmental Engineering

Box 352700, University of Washington

Study Partners

Wastewater Nitrogen Management Approaches

- Source diversion
- Post-septic tank treatment
- Design of the soil dispersal component (drainfield)

OSS Nitrogen Removal Project Design

- Problems:
 - N removals OSS are highly variable
 - Limited treatment options
 - Regional environmental and water source affects on N removal not well-known

OSS Nitrogen Removal Project Design

- Objectives:
 - Maximize N removal efficiencies
 - Verify performance objective (<20 mg/L TN full test avg.)
 - Expand reliable, affordable options

ETV-Nutrient Reduction Protocol

- Minimum of 12 consecutive months
- Daily Design loading 480 gpd (100% ± 10% of the rated capacity) 6 AM 9 AM: ~35% of flow
 11 AM 2 PM: ~25% of flow
 5 PM 8 PM: ~40% of flow
- Stress Testing (effect of home activities)
 - washday loading
 - working parent
 - low-loading
 - power/equipment failure
 - one week vacation

Snoqualmie WWTP Test Site

Snoqualmie WWTP Test Site w/autosampler locations

Nitrogen Biochemical Transformations

Two step process:

- 1) Nitrification "nitrifies NH₄+ to NO₃-
- 2) Denitrification reduces NO₃- to nitrogen gas

Vegetated Recirculating Gravel Filter (VRGF)

Enhanced Recirculating Gravel Filter (ERGF)

ERGF

Average Performance for ERGF Over 12-Month Test (82.3% TN Removal)

Parameter	units	Influent	Effluent
Total N	mg/L	48.6 (9.5)	8.6 (2.2)
NH ₃ -N	mg/L 29.3 (5.3)		6.8 (1.9)
NOx-N	mg/L	mg/L -	
Org-N	mg/L -		1.3 (0.5)
BOD/CBOD*	mg/L	314 (98)	8.6 (1.9)
TSS	mg/L	354 (137)	5.3 (2.2)
VSS	mg/L	324 (131)	4.4 (2.0)
COD/SCOD*	mg/L	715 (223)	24.6 (5.7)
Total Phosphorus	mg/L	5.8 (1.3)	3.5 (1.4)
Fecal Coliform**	CFU/100 mL	8.4E+6	4.6E+5
Alkalinity as CaCO ₃	mg/L	231 (36)	203 (27)
рН		7.4 (0.3)	6.9 (0.2)

^{*}Effluents, **Geometric mean, () is standard deviation

ERGF Influent and Effluent Nitrogen Over 12-Month Test Period

Recirculating Gravel Filter (RGF) & Woodchip Bed - Two Stage System

RGF & Woodchip Bed

RGF & Woodchip Bed

Average Performance for RGF-Woodchip Bed Over 12-Month Test Period

91.8% TN Removal and 960 CFU/100 mL effluent fecal coliform)

Parameter	units	Influent	RGF Effluent	Woodchip
			Average	Effluent
Total N	mg/L	48.6 (9.5)	23.9 (5.4)	4.0 (3.8)
NH ₃ -N	mg/L	29.3 (5.3)	0.7 (0.4)	0.5 (0.5)
NOx-N	mg/L	-	21 (5.5)	2.4 (3.7)
Org-N	mg/L	-	2.2 (1.2)	1.1 (0.3)
BOD/CBOD*	mg/L	314 (97.8)	4.7 (2.6)	10.8 (14.1)
TSS	mg/L	354 (137)	10.1 (12.7)	2.1 (2.0)
VSS	mg/L	324 (131)	5.8 (5.5)	0.9 (2.3)
COD/SCOD*	mg/L	715 (223)	21.6 (5.5)	37.6 (20.7)
Total Phosphorus	mg/L	5.8 (1.3)	1	3.4 (1.9)
Fecal	CFU/100	8.4E+6	1.6E+05	0.96E+03
Coliform**	mL			
Alkalinity as CaCO ₃	mg/L	231 (36)	84 (28)	154 (36.6)
рН		7.4 (0.3)	6.8 (0.3)	6.6 (0.2)

^{*}Effluents, **Geometric mean, () is standard deviation

Nitrogen Removal in RGF and Woodchip Bed Over 12-Month Test Period

Fecal Coliform (Aug 2012 – Feb 2013)

CBOD in RGF and Woodchip Bed Effluents Over 12-Month Test Period

Project Outcomes

- Webpage posting the ETV Reports summarizing the results from the 3 systems
- Provide technical support for Hood Canal On-Site Sewage System Nitrogen Reduction (HCOSSNR) demonstration project
- Complete RS&Gs for the RGF/Woodchip Bed and the VRGF systems

Comparison of the 3 Nitrogen Removal Systems

Damanadan	11 24	Vegetated	Enhanced	RGF/
Parameter	Unit	RGF	RGF	Woodchip Bed
Total Area	ft ²	256	180	221
Treatment Media				2.0-RGF
Depth	ft	3.5	3.5	2.8-Woodchip Bed
Average Effluent				
TN	mg/L	15.1	8.6	4.0
Average TN				
removal	%	68.8	82.3	91.8

To learn more about the project go to

www.doh.wa.gov

search for Denitrification

Acknowledgements from Health

- UW Civil and Environmental Engineering
 David Stensel UWCEE Project Coordinator
 Michael Brett UWCEE Project QA Manager
 Crystal Grinnell Research Assistant
 Stephany Wei Research Assistant
 Songlin Wang UWCEE field engineer
- City of Snoqualmie Wastewater Treatment Plant Tom Holmes - Wastewater Superintendent Lyle Beach - Laboratory Analyst Brian Richardson - Senior Operator
- Peter Lombardi, Orenco Systems Inc.
- Dennis Hallahan, Infiltrator Systems Inc.

